20 research outputs found

    Effects of carpal tunnel syndrome on force coordination and muscle coherence during precision pinch

    Get PDF
    Carpal tunnel syndrome (CTS), caused by entrapment of the median nerve in the carpal tunnel, impairs hand function including dexterous manipulation. The purpose of this study was to investigate the effects of CTS on force coordination and muscle coherence during low-intensity sustained precision pinch while the wrist assumed different postures. Twenty subjects (10 CTS patients and 10 asymptomatic controls) participated in this study. An instrumented pinch device was used to measure the thumb and index finger forces while simultaneously collecting surface electromyographic activities of the abductor pollicis brevis (APB) and first dorsal interosseous (FDI) muscles. Subjects performed a sustained precision pinch at 10% maximum pinch force for 15 sec with the wrist stabilized at 30° extension, neutral, or 30° flexion using customized splints. The force discrepancy and the force coordination angle between the thumb and index finger forces were calculated, as well as the ÎČ-band (15-30 Hz) coherence between APB and FDI. The index finger applied greater force than the thumb (p 0.05). The directional force coordination was not significantly affected by wrist posture or CTS (p > 0.05). In general, digit force coordination during precision pinch seems to be sensitive to wrist flexion, but is not affected by CTS. The ÎČ-band muscular coherence was increased by wrist flexion for CTS patients (p < 0.05), which could be a compensatory mechanism for the flexion-induced exacerbation of CTS symptoms. This study demonstrates that wrist flexion negatively influences muscle and force coordination in CTS patients supporting the avoidance of flexion posture for symptom exacerbation and functional performance

    Future Atmospheric Rivers and Impacts on Precipitation: Overview of the ARTMIP Tier 2 High‐Resolution Global Warming Experiment

    Get PDF
    Atmospheric rivers (ARs) are long, narrow synoptic scale weather features important for Earth’s hydrological cycle typically transporting water vapor poleward, delivering precipitation important for local climates. Understanding ARs in a warming climate is problematic because the AR response to climate change is tied to how the feature is defined. The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) provides insights into this problem by comparing 16 atmospheric river detection tools (ARDTs) to a common data set consisting of high resolution climate change simulations from a global atmospheric general circulation model. ARDTs mostly show increases in frequency and intensity, but the scale of the response is largely dependent on algorithmic criteria. Across ARDTs, bulk characteristics suggest intensity and spatial footprint are inversely correlated, and most focus regions experience increases in precipitation volume coming from extreme ARs. The spread of the AR precipitation response under climate change is large and dependent on ARDT selection

    Directional coordination of thumb and finger forces during precision pinch.

    Get PDF
    The human opposable thumb enables the hand to perform dexterous manipulation of objects, which requires well-coordinated digit force vectors. This study investigated the directional coordination of force vectors generated by the thumb and index finger during precision pinch. Fourteen right-handed, healthy subjects were instructed to exert pinch force on an externally stabilized apparatus with the pulps of the thumb and index finger. Subjects applied forces to follow a force-ramp profile that linearly increased from 0 to 12 N and then decreased to 0 N, at a rate of ± 3 N/s. Directional relationships between the thumb and index finger force vectors were quantified using the coordination angle (CA) between the force vectors. Individual force vectors were further analyzed according to their projection angles (PAs) with respect to the pinch surface planes and the shear angles (SAs) within those planes. Results demonstrated that fingertip force directions were dependent on pinch force magnitude, especially at forces below 2 N. Hysteresis was observed in the force-CA relationship for increasing and decreasing forces and fitted with exponential models. The fitted asymptotic values were 156.0 ± 6.6° and 150.8 ± 9.3° for increasing and decreasing force ramps, respectively. The PA of the thumb force vector deviated further from the direction perpendicular to the pinching surface planes than that of the index finger. The SA showed that the index finger force vector deviated in the ulnar-proximal direction, whereas the thumb switched its force between the ulnar-proximal and radial-proximal directions. The findings shed light on the effects of anatomical composition, biomechanical function, and neuromuscular control in coordinating digit forces during precision pinch, and provided insight into the magnitude-dependent force directional control which potentially affects a range of dexterous manipulations

    Adaptation of the Transverse Carpal Ligament Associated with Repetitive Hand Use in Pianists

    No full text
    <div><p>The transverse carpal ligament (TCL) plays a critical role in carpal tunnel biomechanics through interactions with its surrounding tissues. The purpose of this study was to investigate the <i>in vivo</i> adaptations of the TCL’s mechanical properties in response to repetitive hand use in pianists using acoustic radiation force impulse (ARFI) imaging. It was hypothesized that pianists, in comparison to non-pianists, would have a stiffer TCL as indicated by an increased acoustic shear wave velocity (SWV). ARFI imagining was performed for 10 female pianists and 10 female non-pianists. The median SWV values of the TCL were determined for the entire TCL, as well as for its radial and ulnar portions, rTCL and uTCL, respectively. The TCL SWV was significantly increased in pianists relative to non-pianists (p < 0.05). Additionally, the increased SWV was location dependent for both pianist and non-pianist groups (p < 0.05), with the rTCL having a significantly greater SWV than the uTCL. Between groups, the rTCL SWV of pianists was 22.2% greater than that of the non-pianists (p < 0.001). This localized increase of TCL SWV, i.e. stiffening, may be primarily attributable to focal biomechanical interactions that occur at the radial TCL aspect where the thenar muscles are anchored. Progressive stiffening of the TCL may become constraining to the carpal tunnel, leading to median nerve compression in the tunnel. TCL maladaptation helps explain why populations who repeatedly use their hands are at an increased risk of developing musculoskeletal pathologies, e.g. carpal tunnel syndrome.</p></div

    Experimental setup for acoustic radiation force impulse (ARFI) imaging of the transverse carpal ligament (TCL).

    No full text
    <p>Reprinted under a CC BY license, with permission from the Hand Research Laboratory at Cleveland Clinic, original copyright 2016.</p

    A representative ultrasound image with the TCL outlined on both the B-mode side (left) and ARFI side (right).

    No full text
    <p>The hamate (H), trapezium (T), and thenar muscles’ ulnar point (TUP,*) are identified. The vertical line at the TUP represents the location where the TCL was divided into radial and ulnar portions. Reprinted under a CC BY license, with permission from the Hand Research Laboratory at Cleveland Clinic, original copyright 2016.</p

    Shear force tuning curves for the thumb and index finger.

    No full text
    <p>Shear force tuning curves for the thumb and index finger.</p

    Projection angle for the thumb and index finger.

    No full text
    <p>Each data point represents the average of SA for all the trials within the specified 1-N force interval.</p

    Force projection angles for the thumb and index finger.

    No full text
    <p>Each data point represents the average of PA for all trials within the specified 1-N force interval.</p
    corecore